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Abstract
Based on the idea of balance between the internal and external potentials, it
is shown that for a two-component Bose–Einstein condensate (BEC) confined
in an optical lattice the presence of a spacetime periodic laser field can induce
a family of exact Floquet states (EFSs). The atomic-number densities of the
EFSs are illustrated and the atomic current, phase blowing-up and the quantum
reflection are investigated. The balance conditions and blowing-up region
on parameter space are found, and the influences of phase blowing-up to the
velocity fields, flow densities are revealed. It is demonstrated that the BEC
motions can be controlled by adjusting the laser frequency, wave vector and
amplitude.

PACS numbers: 03.75.Lm, 03.75.Mn, 05.70.Jk, 03.75.Kk

1. Introduction

In the mean-field theory, the macroscopic wavefunction of a Bose–Einstein condensate (BEC)
obeys Gross–Pitaevskii equation (GPE) [1]. To investigate the physical properties of BEC,
we require to seek exact or approximate solutions of GPE. However, the multi-dimensional
GPE is not easy to solve in general, because of the combination of the nonlinear interatomic
interactions and external fields. Fortunately, the GPE can be reduced to lower dimensional
(1D or 2D or (1+1)D) nonlinear Schrödinger equation by one or two strong trapping potentials
[2, 3]. Several exact stationary solutions of GPEs have been obtained for the BECs held in
the quasi-1D Kronig–Penney potential [4], optical lattices [5–7] and the 2D lattice potentials
[8, 9]. By using the exact solutions, many physical properties, such as the stabilities of BEC
[5, 6, 10, 11], phase coherence, superfluid velocity and flow density [12], and the generation
of soliton [10] are revealed.
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In contrast with the stationary state case, there exist few reports in the exact nonstationary
solutions of BECs in (1+1)D spacetime dimensions, since their derivations are more difficult
compared to the former. Only under some rigorous conditions on the interaction intensities,
several exact nonstationary solutions were constructed for an expulsive parabolic potential
[13, 14] and for an optical lattice potential [15]. These exact nonstationary solutions described
the compression of matter waves, dynamics of bright soliton, stability of solution and the
sublattice oscillation of condensates.

The Floquet states are a kind of important nonstationary ones, which have been widely used
to research various physical systems, such as the coherent states of driven Rydberg atom [16],
chaotic quantum ratchets [17], electron transmission in semiconductor heterostructures [18],
selectively suppressing of tunnelling in quantum-dot array [19] and the ionization suppressors
of electron [20]. The Floquet states have also been found in BEC systems and been applied
to probe superfluid–insulator transition [21], towards coherent control [22] and dynamical
tunnelling [23]. It is well known that the GPE with spatially periodic potential has Bloch
solution, and it possesses Floquet solution in the presence of time periodic potential. This
hints broadly that one can use a spacetime periodic laser field to induce the exact Floquet
states (EFSs).

In this paper, we consider a two-component BEC confined in an optical lattice V0 sin2 kx

with strength V0 and wave vector k, and seek the interesting EFS by adding a spacetime
periodic laser standing wave V1 cos kx cos(ωt − β), where V1, ω and β denote the laser
strength, frequency and initial phase, respectively. In the previous work on the exact solutions
of BEC systems, the idea of balance is employed, where the external potential and interatomic
interaction reach an indifferent equilibrium at any spatial point [7–9, 12]. For the considered
time-dependent BEC system we shall establish a new balance condition at any spatiotemporal
point, which leads to a set of EFSs. The spacetime periodical atomic-number densities of
the EFSs are illustrated and the properties of the atomic flow, phase blowing-up [24, 25] and
the quantum reflection are investigated. We show the parameter region, where the balance
solutions exist and the blowing-up region is contained. We also find the spacetime singular
points of velocity fields, which are the zero points of atomic-number densities. Effects of the
phase blowing-up to the physics of the system are revealed. Finally, it is demonstrated that the
velocity fields and flow densities periodically oscillate with the laser frequency and amplitude
such that we can control them by adjusting the frequency and amplitude.

The paper is organized as follows. In section 2, we show in detail the construction of
exact Floquet states by using the balance condition and illustrate the spacetime evolutions of
atomic-number densities. In section 3, we investigate the phase blowing-up, velocity fields
and flow densities. Finally, the results are summarized and the corresponding discussions are
given in section 4.

2. Exact Floquet states

We consider a quasi-1D BEC consisted of N = N1 +N2
87Rb atoms in two coupling hyperfine

states, |1〉 = |F = 1,mF = −1〉 and |2〉 = |F = 2,mF = 1〉, where the three-body
interaction has been neglected such that the number of atoms Ni in i state is a constant. The
coupled GPEs governing the BEC read [7]

ih̄
∂ψ1

∂t
= − h̄2

2m

∂2ψ1

∂x2
+ (g1|ψ1|2 + g3|ψ2|2)ψ1 + V (x, t)ψ1, (1)

ih̄
∂ψ2

∂t
= − h̄2

2m

∂2ψ2

∂x2
+ (g2|ψ2|2 + g3|ψ1|2)ψ2 + V (x, t)ψ2. (2)
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Here, m is the atomic mass of 87Rb; gi = 2h̄ωrasi , for i = 1, 2, 3 [26], represent the
interaction intensities with g1,2 being the interaction intensities between the atoms in
component 1 or 2 and g3 is the interaction intensity between the two different components, asi

is the corresponding s-wave scattering length, ωr is the radial trap frequency and is evaluated
as ωr = 2π × 700 Hz hereafter. In the presence of the spacetime periodic laser field the
external potential is of the form

V (x, t) = V0 sin2 kx + V1 cos kx cos(ωt − β). (3)

The first term is a normal optical-lattice potential and the second term denotes a time-
periodically modulated optical standing wave, both with the same wavelength λ = 2π/k.

When the external optical potential and the internal interaction potentials experimentally
reach into an indifferent equilibrium, we establish the balance condition, namely the sum of
the external potential and any set of the internal potentials equates a constant [7]. Setting the
constant as µ which is the chemical potential of the system yields

(g1|ψ1|2 + g3|ψ2|2) + V = µ, (4)

(g2|ψ2|2 + g3|ψ1|2) + V = µ. (5)

Then equations (1) and (2) are reduced to the linear Schrödinger equations with constant
potential µ:

ih̄
∂ψj

∂t
= − h̄2

2m

∂2ψj

∂x2
+ µψj , for j = 1, 2. (6)

The balance conditions (4) and (5) fix the amplitudes of the wavefunction ψj , and the
Schrödinger equation (6) not only give the same amplitudes but also describe the phases
of wavefunctions [7].

Solving equations (4) and (5) for the atomic-number densities, we get

|ψj |2 = Gj(µ − V ), for j = 1, 2, (7)

where G1 = g3−g2

g2
3−g1g2

,G2 = g3−g1

g2
3−g1g2

. Integrating the atomic-number densities in a single period

of potential, we get the atomic numbers N ′
1, N

′
2 of the two components per spatial-period as∫ 2(l+1)π/k

2lπ/k

|ψj |2dx = 2π

k
· Gj

(
µ − V0

2

)
= N ′

j , for j = 1, 2, (8)

where l is an arbitrary integer. It is interesting to note that the atomic numbers per well are
time independent although the number densities of atoms are periodic functions of time. The
above two equations imply that the chemical potential can be expressed by the experiment
parameters N ′

j , gj and V0 as

µ = kN ′
1

2πG1
+

V0

2
= kN ′

2

2πG2
+

V0

2
, (9)

and the atomic numbers per well must obey the relation

N ′
1

N ′
2

= G1

G2
= g3 − g2

g3 − g1
= as3 − as2

as3 − as1
. (10)

This is the first condition for the balance solutions in equations (4) and (5), which gives a
limitation to the atomic numbers per well and interaction strengths. This condition is weaker
than the corresponding condition in [15], where as1 = as2 = as3 is assumed such that N ′

1 = N ′
2.
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Substituting equations (3) and (9) into equation (7) gives the atomic-number densities in
terms of experimental parameters:

|ψj |2 = Gj(Vc − V0)

2
+ GjV0 cos2 kx − GjV1 cos kx cos(ωt − β), for j = 1, 2.

(11)

Here, we have set Vc = kN ′
1

πG1
= kN ′

2
πG2

. From |ψj |2 � 0 at cos kx = 0 we know that |Vc| is a
supercritical value of the potential strength |V0|, namely

0 < V0 � Vc for Gj > 0, (12)

Vc � V0 < 0 for Gj < 0, (13)

so that |V0| � |Vc|.
Now we solve the linear Schrödinger equation (6) for the Floquet solutions of equations (1)

and (2). Equation (6) is so simple that its Floquet solutions can be easily found in the form

ψj = [(aj + ibj ) + (cj + idj ) cos kx e−i(ωt−β)] · e−i µ

h̄
t (j = 1, 2), (14)

where Floquet energy µ is just the chemical potential, aj , bj , cj and dj are real undetermined
constants. Inserting the Floquet solutions into equation (6) gives the second condition of
balance solutions as

ω = h̄k2

2m
, (15)

which confines the laser frequency and wave vector. In the calculations of this paper, we
evaluate the wave vector k = 0.79 × 107 m−1, so that the values of frequency and recoil
energy read ω = 2.30 × 104 Hz and ER = h̄ω = 2.43 × 10−30 J.

Rewriting the wavefunction in the exponential form

ψj = Rj(x, t) ei�j (x,t), j = 1, 2, (16)

we have the norm and phase

R2
j (x, t) = |ψj |2

= {aj + [cj cos(ωt − β) + dj sin(ωt − β)] cos kx}2

+ {bj − [cj sin(ωt − β) − dj cos(ωt − β)] cos kx}2

= (
a2

j + b2
j

)
+

(
c2
j + d2

j

)
cos2 kx + 2[(aj cj + bjdj ) cos(ωt − β)

+ 2(ajdj − bj cj ) sin(ωt − β)] cos kx, (17)

�j(x, t) = arctan
bj − cj cos kx sin(ωt − β) + dj cos kx cos(ωt − β)

aj + cj cos kx cos(ωt − β) + dj cos kx sin(ωt − β)
− µ

h̄
t. (18)

As shown in equation (17), the norm R2
j (x, t) is the sum of the squares of real and imaginary

parts of ψj , so R2
j (x, t) � 0. Comparing equation (11) with equation (17), we obtain a set of

algebraical equations for aj , bj , cj and dj as

a2
j + b2

j = Gj

2
(Vc − V0), (19)

2(aj cj + bjdj ) = −GjV1, (20)

c2
j + d2

j = GjV0, (21)
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Figure 1. The balance region on parameter plane of V1 versus V0 for N ′
1 = 1.4 × 102 and

(a) as1 = 4.5 nm, as2 = 3.5 nm, as3 = 5.5 nm, G1 = 1.479 × 1038 (J m)−1, Vc = 2.38 × 10−30

J = 0.979ER ; (b) as1 = −4.5 nm, as2 = −3.5 nm, as3 = −5.5 nm, G1 = −1.479 ×
1038 (J m)−1, Vc = −2.38 × 10−30 J = −0.979ER . The solid curves are associated with |V0| �
|Vc|/3 and the dashed curves with |V0| < |Vc|/3. V1 and V0 are in units of recoil energy ER .

ajdj − bj cj = 0. (22)

From equation (21) we can see GiV0 > 0. This infers that G1 and G2 have the same sign.
Noticing the definition Gi = (g3 − gj )

/(
g2

3 − g1g2
)

for i, j = 1, 2; i �= j , the same sign of
(g3 − gj ) implies

g3 > gj or g3 < gj for j = 1, 2. (23)

These two relations can be realized experimentally [27, 28]. In fact, as we known, s-wave
scattering length and then the interaction strength can be modified by means of Feshbach
resonance [29].

Solving the set of equations (19)–(22), we find that aj , bj , cj , dj have real solutions
only if

V1 = ±
√

2V0(Vc − V0). (24)

Combining equations (12) and (13) with equation (24) gives the balance region in parameter
space, which is illustrated for given Vc as in figure 1. In order to induce the possible Floquet
state with the form of equation (14), equations (15) and (24) tell us how to chose the strength
V1 and frequency ω of the laser standing wave. Because equations (19)–(22) are a set
of indefinite algebraical equations, they have an infinite number of solutions. Any set of
solutions corresponds to the same amplitudes as in equations (11) and the different phases of
equation (18). A set of simplest solutions is

bj = dj = 0, aj = ±
√

Gj

2
(Vc − V0), cj = ±√

GjV0 (25)

that leads equation (14) to the Floquet wavefunction,

ψj =
[
±

√
Gj

2
(Vc − V0) ± √

GjV0 cos kx e−i(ωt−β)

]
· e−i µ

h̄
t , (26)

whose amplitudes are same with equation (11).
In the states of equation (26), the atomic numbers of the two BEC components in a spatial

period of potential V are given by equation (8) as N ′
1 and N ′

2, respectively, which never change
with time. However, the atomic-number densities will periodically evolve, because of the
periodicity of the states. From equation (11) we plot the spatiotemporal evolutions of atomic-
number density |ψ1|2 for several different parameter sets as in figures 2–4. As a reference
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(a) (b) (c)

(d) (e)

Figure 2. The spatial evolutions of the atomic-number density |ψ1|2 (solid curves) for
G1 = 1.479 × 1038 (J m)−1, Vc = 0.979ER, V0 = 0.123ER < Vc/3, β = 0, k = 0.79 × 107 m−1

and ω = 2.30 × 104 Hz at (a) t = 0, (b) t = 5π
12ω

, (c) t = π
2ω

, (d) t = 7π
12ω

and (e) t = π
ω

. The
atomic-number density is greater than zero at any spatial position and its maxima fall always to
the centres of the potential wells. In figures 2(a) and (e), there is only one density peak in a period
of V , and in figures 2(b)–(d) there are two density peaks in a period of V . The number density
|ψ1|2 is normalized in units of 108 m−1 and x in units of 10−7 m. The dashed curves denote the
potential function, which is in unit of 10−30 J.

(a) (b) (c)

Figure 3. The spatial evolutions of the atomic-number density |ψ1|2 (solid curves) for
V0 = 0.823ER > Vc/3, β = 7π/17 and at (a) t = 0, (b) t = 7π

12ω
, (c) t = 19π

12ω
. The other

parameters are the same with figure 2. In figure 3(b) and (c), the number density becomes zero at
the sites of potential barriers. The dashed curves denote the potential function, which show two
subwells in a period of V . The same units with figure 2 are adopted.

frame, the potential function is plotted in these figures as the dashed curves. The plots of |ψ2|2
in equation (11) are similar, so we do not show them here. It is clear in equation (3) that at any
moment the potential is spatially periodic and its minima are related to the centres of potential
wells. With the increase of time, the depths and positions of potential wells may vary. In
figures 2 and 3, we show that when Gj > 0, V0 > 0 are set, although the atomic-number
densities have different spatial distributions at different times from zero to a half time-period
π/ω of the potential, their maxima fall always to the centre points of the potential wells. This
means that more atoms are distributed to the centres of potential wells compared to that of the
potential barrier sites. Such atomic distributions correspond to more stabilities of the BEC
system. An important result is numerically found that the atomic-number density is greater
than zero at any spatial position for Gj > 0, V0 < Vc/3 as in figure 2, and it may be zero
at the peak sites of potential for Gj > 0, V0 > Vc/3 as in figure 3. Mathematically, when a
solution of a wave equation or its first derivative equates infinity at a finite time, the solution
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(a) (b)

(d) (e)

(c)

Figure 4. The spatial evolution of the atomic-number density |ψ1|2 (solid curves) for G1 =
−1.479 × 1038 (J m)−1, Vc = −0.979ER , V0 = −0.123ER and β = 0 at times (a) t = 0,
(b) t = 5π

12ω
, (c) t = π

2ω
, (d) t = 7π

12ω
, (e) t = π

ω
. The parameters ω and k are the same with

figure 2. The maxima of atomic-number density appear always at the peak points of the potential.
The dashed curves denote the potential function. The same units are adopted as in figure 2.

is called the blowing-up solution [30]. The zero number density may be associated with an
infinite phase gradient, which will be considered as the phase blowing-up in the next section.

Differing from the case Gj > 0, V0 > 0, when Gj < 0, V0 < 0 are taken, the maxima
of atomic-number density appear always at the peaks of the potential, which is exhibited as in
figure 4. In such a case, the BEC system may be more unstable. Therefore, Gj < 0, V0 < 0
may be an instability region of the parameter space, which can be avoided for stabilizing the
BEC system.

3. Atomic flow and phase blowing-up

In the preceding section, we have analytically constructed the exact Floquet solution of the
considered system and numerically illustrated its spatiotemporal evolutions. Given the system
parameters, the Floquet energy µ and the module of solution are completely determined by
equation (9) and the balance conditions (4) and (5). The Floquet energy is simply proportional
to the laser wave vector k and strength V0, and the module of solution contains the rich motion
properties as shown in figures 2–4. Since the phase of our Floquet state is independent of
the balance conditions, there are many different selections of phases for a given module. We
have only considered the simplest case of equation (25), where the undetermined constants in
phase (18) obey bj = dj = 0. We will see that the simplest phase can also play an important
role in the exact Floquet state and its applications.

According to the definitions of flow velocity field vj (x, t) and current density
Jj (x, t), vj (x, t) = h̄�jx/m, Jj (x, t) = R2

j vj , both depend on the gradient of phase. Making
use of equations (18), (24) and (25), we calculate the phase gradient as

�jx(x, t) = (aj cj + bjdj )k sin kx sin(ωt − β)

R2
j (x, t)

= −GjV1k sin kx sin(ωt − β)

2R2
j (x, t)

. (27)

Although here the simple case with bj = dj = 0 of equation (25) has been considered,
equation (27) shows that in the general case bjdj �= 0, the phase gradient varies only the
amplitude compared to the former. Applying equation (27) to the definitions of flow velocity
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and density results in

Jj (x, t) = −h̄kGjV1 sin kx sin(ωt − β)

2m
, vj (x, t) = −h̄kGjV1 sin kx sin(ωt − β)

2mR2
j (x, t)

.

(28)

The phase gradient and velocity field are inverse proportional to the atomic-number density.
Our interest is thereby what will happen at R2

j (x, t) = 0 and whether some quantities will
become infinity or not in this case? In order to evidence them, we at first extract the spacetime
points (xb, tb) at which the value of R2

j (x, t) vanishes, and then apply them to the phase
gradient and velocity field.

Setting |ψj(xb, tb)|2 = R2
j (xb, tb) = 0 in equation (11) and solving it for cos kxb, we get

cos kxb =
G1V1 cos(ωtb − β) ±

√
G2

1V
2

1 [cos2(ωtb − β) − 1]

2G1V0
. (29)

In the calculation, equation (24) has been employed. In equation (29), cos kxb should be
some real numbers that implies cos(ωtb − β) = ±1. We shall define cos(ωtb1 − β) = 1
and cos(ωtb2 − β) = −1 such that tb1 = (2nπ + β)/ω and tb2 = [(2n + 1)π + β]/ω for
n = 0, 1, 2, . . .. Inserting them into equation (29) respectively, we obtain two values of xb,
which obey the definitions cos kxb1 = ∣∣ V1

2V0

∣∣ and cos kxb2 = −∣∣ V1
2V0

∣∣. The number densities
vanish only if the spacetime points (xbµ, tbν) for µ, ν = 1, 2 satisfy equation (29), otherwise
R2

j > 0. Given the definitions of (xbµ, tbν), inserting them into equation (11) we arrive at

R2
j (xbµ, tbµ) = 0, µ = 1, 2 for G1V1 > 0, (30)

R2
j (xbµ, tbν) = 0, µ, ν = 1, 2; µ �= ν, for G1V1 < 0. (31)

Obviously, the inequality |cos kxbµ| = ∣∣ V1
2V0

∣∣ � 1 implies the parameter region |V1| � 2|V0|
in which there exist the zero points (xbµ, tbν) of the atomic-number densities. This region
has been indicated by the solid curves in figure 1. Combining this with equation (24), we
find three different cases, where the gradients of phase �jx(x, t) show different characters,
respectively.

Case 1. In the parameter region |V1| > 2|V0| for 0 < |V0| <
∣∣Vc

3

∣∣ in equation (24) and as
indicated by the dashed curves in figure 1, R2

j (x, t) > 0 is kept as showed in figures 2 and 4.
So �jx(x, t) and vj (x, t) are periodic and always finite in such a case.

Case 2. At |V1| = |2V0| for V0 = Vc

3 in equation (24), we have cos kxb = ±∣∣ V1
2V0

∣∣ = ±1
and cos(ωtb − β) = ±1 so that sin(ωtb − β) = 0 and sin kxb = 0. Substituting them into
equations (27) and (28) leads to �jx(xb, tb) = 0, vj (xb, tb) = 0 although R2(xb, tb) = 0 in
their denominators. And at other spacetime points �jx(x, t) and vj (x, t) are finite, because
of R2

j (x, t) > 0 here.

Case 3. In the parameter region |V1| < 2|V0| for
∣∣Vc

3

∣∣ < |V0| < |Vc| in equation (24) and
as indicated by the solid curves in figure 1, �jx(x, t) and vj (x, t) may tend to infinity at
spacetime points (xbµ, tbν), where R2(xb, tb) = 0 as in figures 3(b) and (c). We call this
singularity of phase gradient at a finite time the phase blowing-up, and the region |V1| < 2|V0|
is the blowing-up region.

Combining the three cases we know that when Vc is fixed, the values (|V0|, |V1|) =
(|Vc/3|, |2Vc/3|) indicate a bifurcation point for the phase blowing-up on the parameter space.
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(a) (b) (c)
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1

1

1
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Figure 5. The spatiotemporal evolutions of flow velocity field v1 for Vc = 0.979ER and (a)
V0 = 0.123ER < Vc/3, V1 = √

2V0(Vc − V0) � 0.453ER, β = 0; (b) V0 = 0.823ER >

Vc/3, V1 = √
2V0(Vc − V0 � 0.506ER and β = 5π/6. Part (c) is the projection of part (b) on the

plane of v1 versus t. The flow velocity is in unit of 10−2 m s−1, x and t are normalized by 10−7 m
and 10−4 s, respectively. The values of as1, as2, as3 and N ′

1 are the same with figure 1(a). The
blowing-up times are given by equation (34) as tb1 = (2l + 5

6 ) π
ω

for l = 0, 1, 2, . . . .

(This figure is in colour only in the electronic version)

We are interested in the physics of phase blowing-up in case 3. For simplicity and without
loss of generality, we will consider the temporal evolution character of �jx(x, t) at a fixed
spatial point xbµ and take the case G1V1 > 0 and the site xb1 as an example. Applying them
to equations (11) and (27) yields

�jx(xb1, t) = ±Gjk
√

(Vc − V0)(3V0 − Vc) sin(ωt − β)

2Gj(Vc − V0)[1 − cos(ωt − β)]
= ±k

2

√
3V0 − Vc

Vc − V0
cot

ωt − β

2
.

(32)

The singularity at tb1 is obvious, since sin[(ωtb1 − β)/2] = 0 results in

lim
t→tb1

�jx(xb1, t) = ∞. (33)

The similar results are obtained at other spacetime points of (xbµ, tbν), that is �jx(xbµ, tbµ) =
∞ for G1V1 > 0 and µ = 1, 2; and �jx(xbµ, tbν) = ∞ for G1V1 < 0 and µ, ν = 1, 2, µ �= ν.
From the definition of tbµ, the blowing-up time reads

tbµ(l) = (2l + µ − 1)π + β

ω
, (34)

where µ = 1, 2 and l is an arbitrary integer. Clearly, from equation (34) we have the difference
between the adjacent blowing-up times as tbµ(l + 1) − tbµ(l) = 2π/ω, which is just the period
of the laser field.

Noticing the original definition �jx(x, t) = lim�x→0
��j

�x
, the infinite first derivative

in equation (33) implies a jump of the phase, lim�x→0 ��j(xb, tb) �= 0, at the blowing-up
spatiotemporal points. The phase jump is an important property of the phase blowing-up,
which leads to the singularity of the velocity field. From equations (28) and (11), we plot the
spatiotemporal evolutions of the velocity field v1 as in figure 5. In figure 5(a), we display that
when the system parameters are taken in the region |V1| > 2|V0| of case 1, the velocity field
v1 periodically evolves in time and coordinate without blowing-up. When the parameters are
taken in the region |V1| < 2|V0| of case 3, the velocity field v1 periodically blows up as in
figure 5(b). Figure 5(c) is the projection of figure 5(b) on the plane of v1 versus t, that clearly
exhibits the periodic jumps of velocity field from |v1(tbµ)| = ∞ to −|v1(tbµ)| = −∞ as the
increase of time. The time interval of two adjacent blowing-ups is given by equation (34)
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as 2π
ω

, which is just the period of the laser field. During two jumps, the velocity field
continuously evolves from −|v1[tbµ(l)]| to zero, then to |v1[tbµ(l + 1)]|. The velocity field v2

has the similar properties, which are not shown in the figure.
It is interesting to see the behaviour of flow density 	Jj (x, t) at the blowing-up time tbµ.

The flow density in equation (28) is a simple sinusoidal function of time and obeys the relations
Jj (x, tbµ) = 0 and 	Jj (x, tbµ + ε) = −	Jj (x, tbµ − ε) for |ε| 
 1. These mean that the net
current of BEC vanishes at any blowing-up time and the atomic current changes its direction
when a blowing-up time is crossed. The inversion of flow vector implies that the BEC wave
packet at any spatial site produces quantum reflections [31] at every blowing-up time tbµ, so
the matter wave periodically oscillates with the laser frequency. The amplitude of flow density
in equation (28) is proportional to the laser strength V1 and wave vector k. Therefore, we can
control the atomic current by adjusting the frequency, wave vector and strength of the laser
field.

4. Conclusions and discussions

In summary, we have investigated a two-component BEC system confined in an optical lattice,
by adding another spacetime periodic laser standing wave. Under the balance conditions
between the internal and external potentials, we have constructed a set of EFSs. The balance
region of parameter space is found and the time-space periodical atomic-number densities
of the EFSs are illustrated. It is shown that the different atomic distributions correspond to
different properties of the EFSs. Several important properties such as the atomic current, phase
coherence and phase blowing-up, and the quantum reflection are investigated analytically and
numerically. The bifurcation point for the phase blowing-up and the blowing-up region on the
parameter space are given. We also find the spacetime singular points of velocity fields, which
are the zero points of atomic-number densities. However, the zero points of the densities
are not certainly the singular points of velocity field. Influences of the phase blowing-up to
the velocity fields and flow densities are revealed. It is demonstrated that the velocity fields
and flow densities periodically oscillate with frequency equating the laser frequency, and with
wave vector and amplitude being proportional to the laser wave vector and strength. This
supplies a scheme to control the BEC motions by adjusting the frequency, wave vector and
strength of the laser field.

It should be pointed out that the phase blowing-up differs from the state blowing-up
[24, 25], since the singular points of phase gradient just are the zero points of the module
|ψj | = Rj . In other words, although the phase gradient may be an infinity at the spacetime
point (xbµ, tbν), the gradients ψjx(xbµ, tbν) and Rjx(xbµ, tbν) are finite. So we cannot
determine whether the phase blowing-up causes the collapse of BEC although the blowing-up
states are related to the collapses [25]. On the other hand, the phase blowing-up cannot
directly affect the phase coherence of the EFSs, because of the zero module at the blowing-up
spacetime points, Rj(xbµ, tbν) = 0. It is worth to further study the relationships between the
phase blowing-up and experimentally detectable properties, for example, the stability of EFSs
and collapse of BEC.
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